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Abstract 
Face-to-face (FTF) surveys have been the traditional method to gather nationally representative data and 
remain the dominant data collection mode in resource-poor countries. Conducting these surveys is 
expensive and time consuming. With the rapid expansion of mobile phone use, Short Message Service 
(SMS) presents an opportunity to conduct inexpensive, fast, and scalable surveys. However, these 
samples are typically not representative of the target population. Standard adjustments to correct for 
nonrepresentative sampling are insufficient, due to two types of bias: residual sampling bias based on 
unobserved variables, and survey mode effects. We introduce calibrated multilevel regression with 
poststratification (cMRP), a procedure that corrects for residual bias by incorporating a relatively small 
sample of FTF data that is known to be unbiased. We apply this method to the problem of estimating 
financial inclusion (access to formal banking systems) in Uganda. We find that our cMRP approach is 
effective in replicating estimates from a larger and much more expensive FTF survey. This paper includes 
a description of our methods as well as results from the financial inclusion study and a discussion of 
limitations and future areas for research. 

 

Keywords: Multilevel regression with poststratification, SMS survey, calibration, representative data, 
financial inclusion 
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I. Introduction 
Face-to-face (FTF) surveys have traditionally been the primary method to gather nationally representative 
data in low and middle-income countries. However, those surveys are expensive and time consuming. In a 
world increasingly dominated by mobile phones, using Short Message Service (SMS) to conduct surveys 
is a cheap, fast, and scalable alternative to FTF surveys. Unfortunately, these surveys will only reach the 
portion of the population that has access to a mobile phone, which, in resource-poor countries, is skewed 
toward urban and peri-urban younger men; Lau, Lombaard, Baker, Eyerman, & Thalji (2019) found that 
SMS surveys underrepresent women, older people, those with less education, and those with less 
technological capability. Therefore, any inference for a national population based on SMS survey data 
must account for nonrepresentative sampling or they could be subject to sampling bias. 

Accounting for nonrepresentative sampling is not a new problem. The standard solution is to adjust the 
sample results through respondent-level weights so that the weighted sample appears as close as possible 
to the target population on a set of auxiliary variables, such as demographic characteristics. For example, 
under quasi-randomization (Valliant, 2020), a binary regression model is used to approximate the 
inclusion probabilities for each survey respondent, and estimates are calculated using inverse probability 
weighting. An alternative approach, commonly referred to as raking, uses an algorithm that generates a 
set of weights such that the weighted sample appears as close as possible to the target population along 
the margins of each auxiliary variable (Deming & Stephan, 1940). 

Another approach to adjust for nonrepresentative sampling is model-based prediction, in which the 
researcher fits a statistical model to the survey sample and uses that model to estimate outcomes in the 
target population (Little, 1993; Valliant, Dorfman, & Royall, 2000). Though this model can take many 
forms, recent work has shown that hierarchical models that borrow strength across strata demonstrate 
increased efficiency and the ability to account for more auxiliary variables (Gelman & Little, 1997; Park, 
Gelman, & Bafumi, 2004). The modern implementation of this approach, known as multilevel regression 
with poststratification (MRP, or “Mister P”), is now widely used across the social sciences (Ghitza and 
Gelman 2013; Wang et. al. 2015; Trangucci et.al. 2018) and has been called the “gold standard for 
estimating preferences from national surveys” (Selb & Munzert, 2011). 

In this paper, we explore whether MRP can be used to obtain unbiased and efficient estimates for national 
indicators based on SMS survey data. We find that, while MRP successfully adjusts for sampling bias that 
is explained by observed characteristics, it fails to adjust for two types of residual bias that are common to 
SMS surveys: residual sampling bias and survey mode bias. We define residual sampling bias as systemic 
errors in estimation induced by differences between the SMS sample and the target population that we 
cannot control for, and the survey mode bias to be differential response that is directly due to the mode in 
which the respondent was surveyed. We then propose a novel extension, calibrated MRP, that addresses 
both types of bias simultaneously. Calibrated MRP adjusts for residual bias in the SMS survey by 
incorporating a small FTF sample that is assumed to be free of these residual biases. We apply this 
method to estimate several indicators related to financial inclusion in eight countries in Africa and Asia. 

We are not the first researchers to suggest incorporating a second survey mode in order to calibrate 
estimates from a biased survey. Elliott and Davies (2005) suggested adjusting case weights of the biased 
survey using a propensity score model, so that the distribution of propensity scores in the two samples are 
similar. Though this approach addresses observed sampling bias, it ignores the residual biases described 
above. Elliott and Haviland (2007) proposed an estimator that is a weighted average of separate estimates 
derived from each survey mode, where the weights are based on the estimated mean squared error of each 
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mode. Raghunathan et. al. (2007) similarly suggest combining mode-specific estimates, but they combine 
these estimates at a small-area level using a Bayesian hierarchical model. As far as we know we are the 
first to suggest an MRP-based approach that incorporates multiple modes of data, addressing residual bias 
through a single unified model. 

This study is motivated by work carried out by Finmark Trust’s Insight2Impact facility (FMT i2i) to 
estimate rates of financial inclusion in low and middle-income countries. FMT i2i studies access to 
financial tools among marginalized groups, including women, the poor, and rural populations, all of 
which are also typically underrepresented in SMS surveys. FMT i2i strives to improve data collection 
while reducing costs, and this study therefore has the dual aim of estimating financial inclusion for poor 
rural women in several countries and of determining the optimal approach to sampling in terms of data 
collection costs and estimates’ accuracy. 

II. Context and Survey Design 
Financial inclusion, or access to financial products and services, is a key enabler for sustainable 
development in countries of all income levels. It permits individuals to invest in themselves through 
education and business ownership, to weather financial shocks, and to increase savings (Demirguc-Kunt, 
Klapper, Singer, & Oedheusden, 2015). Yet more than one billion individuals worldwide remain excluded 
from access to basic financial services (World Bank Group, 2017). With this large financially excluded 
population in mind, the World Bank, policymakers, and private sector partners set a goal of achieving 
universal financial access by 2020. 

Nonetheless, measuring financial inclusion poses challenges in many parts of Africa and Asia. The 
traditional method to doing so is through detailed face-to-face surveys. Among a few existing surveys is 
the Financial Inclusion Insights (FII) survey, which has had up to six survey rounds in 14 countries since 
2013 (Financial Inclusion Insights, 2020). FII data collection is carried out in person among a nationally 
representative sample and requires training a team of interviewers who travel nationwide. This FTF mode 
of data collection is costly in general but can be particularly expensive when it requires interviewing 
respondents in remote parts of a country to achieve national representativeness. 

To explore a lower-cost alternative to the FII, FMT i2i and Mathematica designed an SMS survey that 
aligned with the FII on key financial inclusion indicators. SMS surveys are conducted using a self-
completion survey method in which the questions are delivered to participants via SMS and respondents 
answer by replying with an SMS. For this study, respondents received a small airtime incentive on 
completion of the survey to mitigate the cost of responding. The sample comes from a database of 
validated mobile numbers sourced in partnership with in-country mobile network operators. This database 
is then classified into two groups, an active and inactive database. The active database includes those 
people who have responded to a survey in the past, and the inactive includes those who have not. 
Response rates for new surveys tend to be higher among the active database, and this database contains 
some profiling information that assists in reaching the desired target audience, for example, by age, 
gender, and region. Half of each sample was sourced using the inactive database and half was sourced 
using the active database. Quotas were set on age, gender, region, and urbanicity with the aim of 
achieving higher coverage than a simple random selection would produce. 

The survey was administered in eight countries of varying size and geographic region: Uganda, Tanzania, 
Kenya, and Nigeria in Africa and Pakistan, India, Indonesia, and Bangladesh in Asia (Jeoffreys-Leach, 
Grundling, Robertson & Berkowitz, 2020). Because our findings regarding the utility of SMS surveys are 
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consistent across countries, this paper focuses on the results for Uganda, which are based on 1,362 SMS 
respondents and 3,001 FII respondents. 

III. Methods 

3.1. Poststratification 

Suppose we are interested in the population mean 𝜃𝜃 = 1
𝑁𝑁
∑ 𝑌𝑌𝑖𝑖 = 𝑌𝑌�𝑖𝑖  for a particular outcome 𝑌𝑌, where 𝑁𝑁 is 

the size of the total population, and we collect data from a sample 𝑆𝑆 from that population of size 𝑛𝑛 < 𝑁𝑁. 
When the sample is not representative of the target population, the sample mean 1

𝑛𝑛
∑ 𝑌𝑌𝑖𝑖𝑖𝑖∈𝑆𝑆  could be a 

biased estimate of 𝜃𝜃. In poststratification, the strategy to estimate the population mean from a 
nonrepresentative sample is to divide the population up into mutually exclusive groups, which we call 
poststratification cells (Little, 1993). These cells are typically formed as the unique combinations of a set 
of poststratification variables that describe the ways in which members of the sample differ from the 
target population. The list of poststratification variables should include any potential confounders, that is, 
variables that are associated with both the outcome and selection into the sample. If these confounders are 
continuous variables, they are discretized to form categorical variables (for example, age categories) so 
that mutually exclusive cells can be formed. 

Let 𝑗𝑗 index the cell and 𝐶𝐶𝑗𝑗 indicate the set of individuals in the 𝑗𝑗th cell. We can express the population 
mean as a weighted average of the means within each cell: 

 𝜃𝜃 =
1
𝑁𝑁
�𝑌𝑌𝑖𝑖 =

1
𝑁𝑁
� � 𝑌𝑌𝑖𝑖

𝑖𝑖:𝑖𝑖∈𝐶𝐶𝑗𝑗𝑗𝑗𝑖𝑖

=
1
𝑁𝑁
�𝑁𝑁𝑗𝑗𝑌𝑌�𝑗𝑗
𝑗𝑗

= �𝑊𝑊𝑗𝑗𝑌𝑌�𝑗𝑗
𝑗𝑗

 (1) 

where 𝑁𝑁𝑗𝑗 is the population size of the jth cell, 𝑌𝑌�𝑗𝑗 = 1
𝑁𝑁𝑗𝑗
∑ 𝑌𝑌𝑖𝑖𝑖𝑖:𝑖𝑖∈𝐶𝐶𝑗𝑗  is the cell mean, and  𝑊𝑊𝑗𝑗 = 𝑁𝑁𝑗𝑗

𝑁𝑁
 is the 

relative size of the cell in the target population (the poststratification weight). Equation (1) suggests that if 
the poststratification weights are known, we can obtain an unbiased estimate of 𝜃𝜃 if we have unbiased 
estimates of the cell-specific means, 𝜃𝜃𝑗𝑗 ≡ 𝑌𝑌�𝑗𝑗. For estimates �𝜃𝜃�𝑗𝑗�, the poststratified estimate of the 
population mean is  

 𝜃𝜃� = �𝑊𝑊𝑗𝑗𝜃𝜃�𝑗𝑗
𝑗𝑗

 (2) 

Poststratification can also be used to estimate outcomes for any subgroup of the population that is defined 
as a subset of poststratification cells. If 𝑆𝑆 is one such subset, an estimate of the outcome for the subgroup 
is obtained by averaging cell-specific means in the corresponding poststratification cells: 𝜃𝜃�𝑆𝑆 =
∑ 𝑊𝑊𝑗𝑗𝜃𝜃�𝑗𝑗𝑗𝑗∈𝑆𝑆 /∑ 𝑊𝑊𝑗𝑗𝑗𝑗∈𝑆𝑆 . 

The most common choice for 𝜃𝜃�𝑗𝑗 is the sample mean within each cell (Levy & Lemeshow, 2008), but 
when the number of cells is large, there will be cells with little to no sample and cell-specific means will 
be either highly unstable or impossible to compute. 
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3.2. Multilevel regression with poststratification 

In MRP, the cell-specific means 𝜃𝜃𝑗𝑗 are instead estimated using a Bayesian multilevel regression model 
(Gelman & Hill, 2006). The model borrows strength across similar cells in order to maximize efficiency 
(Gelman & Little, 1997), especially for cells with little to no sample. This allows poststratification to be 
performed with more poststratification variables than the traditional implementation of poststratification 
(based on sample means), thereby reducing bias due to confounding that is unaccounted for. 

The specification of the multilevel regression model is flexible and can be tailored to the application. Let 
𝑘𝑘 ∈ {1, … ,𝐾𝐾} index the poststratification variables, and 𝑙𝑙 ∈ {1, … , 𝐿𝐿𝑘𝑘} index the level of the 𝑘𝑘𝑡𝑡ℎ 
poststratification variable. Also let 𝑦𝑦𝑖𝑖 be the outcome for respondent 𝑖𝑖, and 𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖 be the (0/1) indicator that 
poststratification variable 𝑘𝑘 takes the value 𝑙𝑙 for respondent 𝑖𝑖. For a binary outcome, a simple multilevel 
logistic regression model could take the following form: 

 log �
𝑝𝑝𝑖𝑖

1− 𝑝𝑝𝑖𝑖
� = 𝛼𝛼 + ��𝛼𝛼𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖

𝐿𝐿𝑘𝑘

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

 

𝛼𝛼𝑖𝑖𝑘𝑘 ∼ 𝑁𝑁(0,𝜎𝜎𝑘𝑘)       ∀𝑘𝑘 

(3) 

 

where 𝑝𝑝𝑖𝑖 = Pr(𝑦𝑦𝑖𝑖 = 1). The second row of the equation specifies a shrinkage prior that identifies the 
model as a multilevel (or hierarchical): the coefficients corresponding to the different levels 𝑙𝑙 of 
poststratification variable 𝑘𝑘 are assumed to come from a normal distribution; these priors promote 
borrowing of strength across the different levels of each poststratification variable. Finally, we follow the 
advice of Gelman (2005) and place a half-normal hyperprior on the variance components, i.e. 𝜎𝜎𝑘𝑘 ∼
𝑁𝑁+(0, 𝜏𝜏), to promote identifiability. 

The multilevel regression model can be extended to include, for example, interactions between different 
poststratification variables. The full specification of the model including all two-way interactions can be 
found in Appendix A of the supplemental material. Appendix B contains sample R code that uses the 
brms package to fit the regression model (Bürkner, 2018). 

3.3. Assumptions of MRP in the context of SMS surveys 

The key assumption in any poststratification approach is that the cell-specific estimates (which in MRP 
are based on the multilevel regression model) are unbiased for the cell-specific population means. That is, 

 𝜃𝜃�𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐸𝐸𝑀𝑀𝑀𝑀�𝑌𝑌�𝑋𝑋𝑗𝑗� = 𝜃𝜃𝑗𝑗 (4) 

where 𝐸𝐸𝑀𝑀𝑀𝑀[𝑌𝑌|𝑋𝑋] is the expected value of 𝑌𝑌 based on the multilevel regression model. For this assumption 
to hold in MRP, several criteria must be met. Some of these are our typical regression modeling 
assumptions, in particular that we have specified an appropriate functional form for the model, including 
any necessary interactions between predictors. Because we are fitting a Bayesian model, the assumptions 
include the use of an appropriate prior distribution for model parameters—these assumptions are 
particularly important for estimating cells with little or no survey data because they specify how 
information is borrowed from neighboring cells in order to produce these estimates. However, the most 
important assumption required for (4) to hold is that of “no unobserved confounders”, in other words, that 
we are including any variable in the model that is associated with both outcomes and selection into the 
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sample (Si, Trangucci, Gabry, & Gelman, 2019). Stated differently, we assume that within a 
poststratification cell, the poststratification variables account for all the differences in outcomes between 
those in the survey (from the SMS sample) and those we are interested in (for the target population). 

The “no unobserved confounders” assumption is particularly risky for SMS surveys for two reasons. The 
first reason is the potential for residual sampling bias—that the SMS sample may differ from the target 
population even within poststratification cells, in ways that are associated with outcomes. We attempt to 
mitigate this risk by including all poststratification variables that could account for differences in the 
populations, but there could be variables associated with both SMS survey participation and outcomes 
that we either are unable to measure or neglect to include. For example, access to a cellular phone could 
be a key confounder for some outcomes, but we cannot control for it because an SMS sample does not 
contain any information about individuals without cellular phone access. 

The second reason that SMS surveys are susceptible to residual confounding is survey mode bias. The 
same exact population could respond differently to the survey questions if asked the question over SMS 
message, compared to being asked the question in a face-to-face survey. There are several reasons for 
this. For example, question wording may differ between the two surveys because SMS questions must be 
shorter to fit within a fixed character limit. SMS respondents may also be more likely to misinterpret a 
survey item because there is no interviewer who can clarify the question. Additionally, SMS respondents 
may be more prone to “straight-lining responses” (rushing through a survey and selecting identical 
responses to each survey item) because of lack of motivation to complete the survey. In each of these 
cases, the confounding variable is the survey mode itself. Unfortunately, that variable cannot be adjusted 
for when all survey responses are of the same mode. 

Another assumption of MRP (or any poststratification procedure) that we have ignored until now is that 
the poststratification weights 𝑊𝑊𝑗𝑗 must be known. In practice these weights will rarely be known exactly, 
and usually this information will come from a large national survey. From this survey the 
poststratification weight for cell 𝑗𝑗 can be estimated as 𝑊𝑊�𝑗𝑗 = ∑ 𝑤𝑤𝑖𝑖𝐼𝐼𝑖𝑖𝑗𝑗/∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 , where 𝑤𝑤𝑖𝑖 is the case weight 
for observation 𝑖𝑖 in the national survey, and 𝐼𝐼𝑖𝑖𝑗𝑗 is the 0/1 indicator that observation 𝑖𝑖 falls in 
poststratification cell 𝑗𝑗. We explore the effect of having inexact estimates of poststratification weights 
through simulations in Section 4. 

3.4. Calibrated MRP 

Since we cannot correct for residual sampling bias or survey mode bias when all the data come from the 
same mode, we propose a simple solution: we augment the sample with a small amount of data from 
another survey mode that we can assume to be free of residual bias within cells. In practice this unbiased 
sample will typically be more expensive to collect per respondent, and have a smaller sample size, than 
the SMS survey. For example, it can be a smaller version of the FTF survey that we are intending to 
replace. We then fit a regression model to the combined dataset that borrows strength across the two 
survey modes, leveraging the larger size of the SMS sample with the unbiased property of the smaller 
FTF sample to provide efficient estimates of how a FTF participant would respond to the survey question. 
We can then poststratify these estimates to any target population of interest. 

We do not require that the “smaller sample” FTF survey be conducted on a sample that is representative 
of the target population, though in practice it will often be more representative than the SMS survey. For 
example, SMS surveys are often subject to sampling biases that do not apply to the FTF survey, as cell 
phone ownership may be more common for certain segments of the population. Regardless, we do assume 
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that we can adjust for the nonrepresentative sampling of the unbiased survey by applying MRP to the 
observed auxiliary variables (i.e., no unobserved confounders). Mathematically, we assume that 
𝐸𝐸�𝜃𝜃�𝑗𝑗

𝐹𝐹𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀� = 𝜃𝜃𝑗𝑗, where 𝜃𝜃�𝑗𝑗
𝐹𝐹𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀 is the MRP-based estimate for each cell 𝑗𝑗 based on the FTF survey. 

One option for obtaining national estimates would be to ignore the SMS data altogether and simply apply 
MRP to the smaller sample FTF data. Although this approach will result in unbiased estimates, these 
estimates could be more uncertain because of the small sample of FTF data that is expected to be 
available. 

Instead, we propose an approach that optimally leverages both the SMS and FTF data in order to achieve 
more efficient estimates. We refer to the procedure as calibrated MRP (cMRP), and it consists of the 
following steps: 

1. Stack the SMS and FTF data into a single dataset, retaining the information about the survey mode 
(SMS versus FTF) as a covariate. 

2. Fit a multilevel regression model to the stacked dataset. This model estimates outcomes conditional 
on both the poststratification variables and the survey mode. 

3. Estimate the cell-specific means (𝜃𝜃𝑗𝑗) for each poststratification cell under the unbiased survey mode: 
𝜃𝜃�𝑗𝑗𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐸𝐸𝑀𝑀𝑀𝑀�𝑌𝑌�𝑋𝑋𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹𝐹𝐹𝐹𝐹�. 

4. Poststratify the resulting estimates using equation (2), using the cMRP-based estimates 𝜃𝜃�𝑗𝑗𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀 for 𝜃𝜃�𝑗𝑗. 

The intuition behind the procedure is relatively straightforward. We first build a model that estimates the 
mean outcome for any combination of auxiliary variables (i.e., poststratification cell) and survey mode. 
We then use only the estimates we consider to be unbiased, which are those that correspond to the FTF 
survey mode. Importantly, these estimates should be free of both residual sampling bias and survey mode 
bias, as long as our assumption holds that the FTF survey is free of these biases after adjusting for 
observed covariates. In addition, we note that these unbiased estimates are informed by both SMS and 
FTF data by borrowing strength across survey modes, an essential feature because we expect the sample 
size of FTF data to be relatively small. At a high level, the larger SMS dataset is used to understand 
which poststratification cells have higher versus lower rates of the outcome, and the smaller FTF sample 
is used to adjust those estimates up or down to calibrate them to how FTF survey participants would 
respond. 

We estimate the Bayesian multilevel regression model using Markov Chain Monte Carlo sampling, which 
provides the posterior distribution for all model parameters. Since our target estimands are linear 
combinations of these model parameters, the uncertainty around the parameters propagates naturally to 
the poststratified estimates (Gelman & Hill 2006). 

To illustrate, consider a simplified scenario where we have two dichotomous auxiliary variables, gender 
(male/female) and urbanicity (urban/rural), and two survey modes, SMS and FTF. The two dichotomous 
auxiliary variables create four poststratification cells, and we wish to estimate the mean of the outcome in 
each of these cells. Following the above procedure, we first combine the two datasets into a single dataset 
that contains variables for the outcome, gender, urbanicity, and survey mode. Next, we fit a multilevel 
regression model to estimate 𝐸𝐸[𝑌𝑌|𝑋𝑋,𝑀𝑀], where the covariates 𝑋𝑋𝑖𝑖 include gender and urbanicity and 𝑀𝑀𝑖𝑖 
represents the survey mode. We then use this model to calculate 𝜃𝜃�𝑗𝑗 = 𝐸𝐸𝑀𝑀𝑀𝑀�𝑌𝑌�𝑋𝑋 = 𝑥𝑥𝑗𝑗,𝑀𝑀 = 𝐹𝐹𝐹𝐹𝐹𝐹� for each 
of the four poststratification cells, where 𝑥𝑥𝑗𝑗 is the combination of auxiliary variables that corresponds to 
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cell 𝑗𝑗. Finally, we poststratify by applying equation (1) to the cell-specific estimates: 𝜃𝜃� = ∑ 𝑊𝑊𝑗𝑗𝜃𝜃�𝑗𝑗4
𝑗𝑗=1 , 

where the poststratification weights 𝑊𝑊𝑗𝑗 come from an external source and ∑ 𝑊𝑊𝑗𝑗
4
𝑗𝑗=1 = 1. 

As in the standard implementation of MRP, the procedure is flexible in the form of the multilevel 
regression model. However, we recommend including interactions between survey mode and the 
poststratification variables, thereby allowing the calibration for sampling mode to vary for each 
poststratification cell. Thus, a reasonable version of the regression model for the case with a binary 
outcome would be 

 
log �

𝑝𝑝𝑖𝑖
1− 𝑝𝑝𝑖𝑖

� = 𝛼𝛼 + 𝛽𝛽𝑀𝑀𝑖𝑖 + ���𝛼𝛼𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖�
𝐿𝐿𝑘𝑘

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

 

𝛼𝛼𝑖𝑖𝑘𝑘 ∼ 𝑁𝑁(0,𝜎𝜎𝑘𝑘)       ∀𝑘𝑘 
𝛾𝛾𝑖𝑖𝑘𝑘 ∼ 𝑁𝑁�0,𝜎𝜎𝑘𝑘𝑀𝑀�       ∀𝑘𝑘 

(5) 

 

The full specification (including priors) of this model as well as an extension that includes interactions 
between poststratification variables can be found in Appendix A in the online supplement, along with 
sample brms code in Appendix B. 

IV. Simulation Study 
We conducted a simulation study in order to assess the performance of cMRP compared to alternative 
approaches, under a range of conditions. We consider a total of 36 simulation scenarios, which constitute 
all combinations of the following four parameters: 

1. 𝛼𝛼 ∈ {0,0.5,1}: the level of observable sampling bias for the SMS survey 
2. 𝛾𝛾 ∈ {0,0.5}: the level of residual bias for the SMS survey 

3. 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 ∈ {150,300}: the size of the face-to-face sample 

4. 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {3000,10000,∞}: the size of a reference dataset containing poststratification variables in the 
target population. A size of ∞ indicates that the joint distribution of the poststratification variables is 
known exactly. 

Note that these simulations do not explicitly distinguish between residual sampling bias and survey mode 
bias, because mechanistically their effects on outcomes are identical. Instead, the parameter 𝛾𝛾 controls the 
combined effect of both types of residual bias. We run each scenario for 100 iterations, for a total of 3600 
simulated datasets. The next section describes more specifically how the four parameters are used to 
generate data. 

1.2. Data generating process 

4.2.1. Sampling poststratification variables 

We consider 5 poststratification variables for the purposes of this simulation: age category (5 levels), 
gender (2 levels), rural status (2 levels), region (4 levels), and education (5 levels). In order to generate 
realistic distributions of these variables, we sample respondents from the Uganda financial inclusion data. 
As previously mentioned, this data consists of two samples: an SMS survey, and a face-to-face survey 
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(the FII). For the purposes of the simulation, we also require two samples (an SMS survey and a face-to-
face survey). To generate the face-to-face survey, we sample 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 respondents from the Uganda FII data, 
with replacement. To generate poststratification variables for the SMS sample, we sample 𝛼𝛼𝑁𝑁𝑆𝑆𝑀𝑀𝑆𝑆 
respondents from the Uganda SMS data, and (1 − 𝛼𝛼)𝑁𝑁𝑆𝑆𝑀𝑀𝑆𝑆 respondents from the Uganda FII data. In this 
way, 𝛼𝛼 controls the representativeness of the resulting SMS sample. When 𝛼𝛼 = 0, the SMS sample will 
be defined based entirely on the Uganda FII data; when 𝛼𝛼 = 1, it will be defined based on the less 
representative Uganda SMS data. We set 𝑁𝑁𝑆𝑆𝑀𝑀𝑆𝑆 = 1500 for all scenarios, as this is the approximate size 
of the SMS sample in the Uganda data. The two samples (SMS and face-to-face) are combined into a 
single dataset, retaining the survey mode as a variable 𝑀𝑀𝑖𝑖 (𝑀𝑀𝑖𝑖 = 0 for face-to-face, 𝑀𝑀𝑖𝑖 = 1 for SMS). 

In addition to the SMS and face-to-face samples, we assume a reference dataset of size 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 is available, 
which contains information on the joint distribution of the poststratification variables in the target 
population. We define the true joint distribution of the poststratification variables to be the distribution 
implied by the weighted Uganda FII data (these weights were generated through raking by the FII survey 
administrators and provided along with the data). For finite values of 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟, we generate a reference 
dataset by drawing a weighted sample (using the raked weights) of size 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟, with replacement, from the 
FII data. When 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 = ∞, we assume the entire weighted FII dataset is available. 

4.2.2. Generating outcomes 

For each observation, we generate outcomes using a gradient-boosted model (GBM) that is fit to the 
Uganda FII data. Gradient-boosting is an ensemble, nonparametric machine learning technique built by 
combining many weak learners. Our GBM implementation uses the gbm package in R to estimate the 
probability of a respondent having an active mobile money account in Uganda, conditional on the five 
poststratification variables. This model allows for two-way interactions between all predictors, with the 
optimal number of boosting iterations estimated using 5-fold cross-validation. Note that as this model is 
fit to the Uganda FII data (not the sampled data for the simulation), the model only needs to be fit one 
time. 

Let 𝑋𝑋𝑖𝑖 be the vector of poststratification variables for sampled respondent 𝑖𝑖, and 𝑓𝑓𝐺𝐺𝐺𝐺𝑀𝑀(𝑋𝑋𝑖𝑖) be the 
predicted log odds based on the gradient-boosted model. We generate outcomes {𝑌𝑌𝑖𝑖} for all respondents in 
our sample (SMS or face-to-face) according to the following model: 

 log�
Pr(𝑌𝑌𝑖𝑖 = 1)

1− Pr(𝑌𝑌𝑖𝑖 = 1)� = 𝑓𝑓𝐺𝐺𝐺𝐺𝑀𝑀(𝑋𝑋𝑖𝑖) + 𝛾𝛾𝑀𝑀𝑖𝑖 (6) 

Thus, the parameter 𝛾𝛾 controls the residual bias: it is the increase in the log odds that 𝑌𝑌𝑖𝑖 = 1 when an 
individual is sampled via SMS. We assume that this bias is the same for all respondents on the log odds 
scale. 

1.2. Estimation and performance 

For each iteration of each of the 36 simulation scenarios, we generate 26 estimates. The 26 estimates 
differ from one another in three ways: 

a. Target population. We consider two different target populations. The first is the full Uganda 
population, as defined by the joint distribution implied by the weighted Uganda FII data. The 
second is the subgroup of the Uganda population corresponding to lower-educated, rural women. 
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This subgroup constitutes 26% of the target population, but just 2.3% of the SMS sample in these 
simulations. 

b. Source data. The estimates can be based on the SMS sample alone (SMS), the face-to-face 
sample alone (FTF), or a combined sample including both SMS and face-to-face data (CMB). 

c. Estimation method. We consider the following estimation approaches. Note that not all 
estimation methods apply to each data source (discussed below). 
i. Unadjusted. We calculate a simple mean of the outcomes in the source data. 
ii. Inverse probability weighting (IPW). We follow the quasi-randomization procedure described 

by Valliant (2020). First, we generate pseudo-inclusion probabilities for each observation of 
the SMS data based on a logistic regression model. This model is a logistic regression model 
fit by combining the source data (SMS, FTF, or CMB) with the reference data, to estimate the 
likelihood that each observation is in the source data. We then generate estimates for each 
target population using inverse-probability weighting. 

iii. Standard MRP. The standard implementation of MRP, described in Section 3.2. We estimate 
two versions: one that uses a multilevel regression model with main effects only (MRP1, 
following equation 3 or Model A1 in Appendix A), and another that includes two-way 
interactions between poststratification variables (MRP2, following Model A2). 

iv. Blended. We follow the procedure of Elliott and Haviland (2007) to combine the IPW-based 
estimates from the SMS sample with that from the FII sample. The final estimate is a 
weighted average of the IPW estimates corresponding to SMS-only and FTF-only sources, 
where the weights are based on the estimated mean-squared error of each sub-estimate. 

v. Calibrated MRP. Calibrated MRP as described in Section 3.4. We estimate two versions: one 
that uses a multilevel regression model following equation 5 (cMRP1, following equation 5 
or Model A3), and another that includes two-way interactions between poststratification 
variables (cMRP2, following Model A4). 

For the estimates based on source data that comes from a single sample (either the SMS only or the face-
to-face only sample), we apply four estimation methods (i-iii, using two versions of MRP). For those 
based on the combined (SMS and face-to-face) data, we apply five estimation methods (i, ii, iv, and v, 
using two versions of cMRP). This leads to a total of 13 combinations of source data and estimation 
method. Each of these 13 approaches are used to estimate the rate in both target populations (26 total 
estimates). 

For each of the 36 scenarios, we compare the 26 estimates to the true rate of the outcome in the 
corresponding target population (full country or subgroup). The true rate is defined by first applying the 
GBM to predict the outcome in each observation of the Uganda FII dataset, and then taking a weighted 
average of these predicted probabilities over the corresponding target population, using the raked weights 
provided with the FII dataset. We summarize the performance of each method in each scenario by 
calculating their bias, variance, and mean squared error (MSE). 

1.2 Results 

Table 1 presents the simulation results corresponding to the subset of the scenarios where 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 = 150, 
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 = ∞, and the estimation target is the full population. Results are presented as the MSE, with the 
absolute value of the bias in parentheses. Approaches that use only SMS data perform very well when 
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there is no residual bias and very little observable sampling bias. However, these approaches perform 
extremely poorly in the presence of residual bias. On the other hand, the approaches that use only the 
face-to-face dataset perform similarly across all scenarios – this is expected because the observable 
sampling bias and residual bias do not affect the face-to-face sample. Though all approaches that use only 
FTF data are unbiased, they also tend to have more variance than the SMS-only approaches due to the 
small sample of face-to-face data. Among the eight single-source approaches (SMS or FTF), the MRP 
methods consistently outperform the unadjusted and IPW approaches. Including interactions in the 
multilevel regression model improves the performance of calibrated MRP in the presence of survey mode 
bias (cMRP2 vs. cMRP1) but slightly worsens its performance when no survey mode bias is present due 
to an increase in variance. The increase in variance observed in the models that include interactions is due 
to using a regression model with more terms in it that are ultimately unnecessary (this complexity is not 
part of the data-generating mechanism). The interactions do not have a substantial effect on the 
performance of standard MRP. 

Table 1. Simulation results by level of bias (𝜶𝜶 and 𝜸𝜸), for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟏𝟏𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = ∞, 
and the target population is the full population. Estimates are presented as MSE on the 
percentage point scale (outcomes are percentages out of 100, not out of 1), with the absolute bias 
in parentheses. 

Source Method 
No residual bias (𝜸𝜸 = 𝟏𝟏) With residual bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 1.5 (0.5) 301.2 (17.3) 1133.2 (33.6) 92.3 (9.5) 645.0 (25.4) 1710.8 (41.3) 

SMS IPW 1.4 (0.2) 12.6 (3.3) 91.6 (9.2) 85.9 (9.2) 155.2 (12.4) 372.9 (19.1) 

SMS MRP1 1.2 (0.0) 1.9 (0.5) 11.9 (2.4) 83.8 (9.1) 92.8 (9.5) 145.5 (11.7) 

SMS MRP2 1.3 (0.0) 1.9 (0.5) 11.7 (2.3) 84.1 (9.1) 92.1 (9.5) 144.4 (11.7) 

FTF Unadj. 12.9 (0.2) 14.8 (1.1) 14.1 (0.3) 18.8 (0.7) 13.8 (0.7) 16.4 (0.4) 

FTF IPW 14.3 (0.4) 11.5 (0.3) 13.8 (0.1) 12.2 (0.4) 11.0 (0.4) 14.6 (0.3) 

FTF MRP1 12.6 (0.3) 11.1 (0.6) 12.2 (0.0) 13.5 (0.5) 9.6 (0.5) 12.8 (0.4) 

FTF MRP2 12.7 (0.2) 10.6 (0.5) 12.1 (0.0) 13.5 (0.5) 9.3 (0.5) 13.4 (0.4) 

CMB Unadj. 1.4 (0.4) 252.2 (15.8) 938.2 (30.6) 77.5 (8.7) 536.2 (23.1) 1416.6 (37.6) 

CMB IPW 1.2 (0.2) 10.8 (3.0) 75.8 (8.4) 71.7 (8.4) 129.3 (11.3) 309.5 (17.4) 

CMB Blended 6.7 (0.3) 8.9 (1.4) 16.3 (1.5) 16.0 (1.9) 16.1 (1.8) 17.7 (1.3) 

CMB cMRP1 6.7 (0.0) 5.8 (0.6) 7.6 (0.3) 14.6 (1.6) 11.3 (1.6) 13.7 (1.5) 

CMB cMRP2 8.2 (0.1) 6.8 (0.6) 8.3 (0.2) 13.4 (1.4) 10.3 (1.4) 12.7 (1.3) 

cMRP seems to offer both low bias and low variance, when possible, and consistently performs well 
across all six scenarios presented in the table. Among each of the six scenarios, the absolute bias of cMRP 
is less than two percentage points. For cases with no residual bias it does not perform quite as well as the 
SMS-only approaches when there is no observable sampling bias, but it does outperform them when the 
observable sampling bias is higher. When there is residual bias, the approach is successful in leveraging 
the face-to-face data to provide unbiased estimates, despite a highly biased SMS sample. Performance in 
these scenarios is similar to the performance of the approaches that use only face-to-face data. Among the 
four approaches that combine SMS and face-to-face data, cMRP has the lowest MSE, except in the case 
where 𝛾𝛾 = 𝛼𝛼 = 0.  

The relative advantage of cMRP compared to MRP using face-to-face data alone is more apparent when 
the target population is the subgroup of lower-educated rural women (Table 2). In these cases, cMRP 
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outperforms MRP using only face-to-face data by a wide margin, in all six scenarios. The relatively small 
sample size for the face-to-face data causes the estimates based only on this dataset to be highly uncertain 
for this subgroup, but cMRP is able to leverage the information available in the larger SMS sample to 
obtain much more stable estimates. Interestingly, the unadjusted and IPW estimates that use SMS data are 
much more accurate for the smaller subgroup than for the full population. This is because these 
procedures use only the subset of the SMS data that corresponds to the subgroup, thereby providing a 
more homogenous sample of respondents that is not as susceptible to sampling bias. 
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Table 2. Simulation results by level of bias (𝜶𝜶 and 𝜸𝜸), for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟏𝟏𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = ∞, 
and the target population is the subgroup of lower-educated, rural women. Estimates are 
presented as MSE on the percentage point scale (outcomes are percentages out of 100, not out of 
1), with the absolute bias in parentheses. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 3.2 (0.2) 6.4 (0.6) 90.1 (5.3) 66.9 (7.9) 80.3 (8.6) 223.9 (12.6) 

SMS IPW 3.1 (0.1) 5.8 (0.1) 81.3 (4.4) 59.0 (7.4) 65.3 (7.6) 194.9 (11.5) 

SMS MRP1 2.5 (0.8) 4.1 (1.2) 32.4 (4.4) 73.8 (8.4) 85.2 (9.0) 177.8 (12.5) 

SMS MRP2 2.3 (0.6) 3.9 (1.0) 32.6 (4.2) 68.6 (8.1) 78.6 (8.6) 168.1 (12.1) 

FTF Unadj. 30.1 (0.2) 29.6 (0.9) 37.0 (0.1) 27.9 (0.2) 27.0 (0.8) 32.8 (0.2) 

FTF IPW 29.4 (0.6) 29.6 (0.5) 37.8 (0.1) 28.8 (0.1) 26.3 (0.3) 37.2 (0.4) 

FTF MRP1 38.2 (4.2) 39.1 (4.3) 39.6 (3.6) 34.4 (3.9) 33.8 (4.1) 31.3 (3.5) 

FTF MRP2 30.2 (3.0) 33.5 (3.6) 35.9 (2.9) 29.4 (3.0) 28.6 (3.4) 28.9 (2.6) 

CMB Unadj. 2.6 (0.2) 5.5 (0.7) 27.8 (2.2) 55.8 (7.2) 60.0 (7.3) 54.1 (5.2) 

CMB IPW 2.5 (0.1) 5.2 (0.0) 60.6 (3.7) 49.0 (6.8) 53.7 (6.9) 143.4 (9.8) 

CMB Blended 14.6 (0.8) 16.0 (0.0) 31.5 (0.1) 27.2 (1.4) 26.4 (1.8) 37.0 (0.6) 

CMB cMRP1 5.9 (0.9) 5.6 (1.4) 13.4 (2.0) 13.5 (2.2) 12.4 (2.3) 19.3 (2.6) 

CMB cMRP2 7.4 (1.1) 8.4 (1.5) 14.4 (1.8) 12.5 (2.1) 11.7 (2.1) 17.7 (2.3) 

The trends in performance across 𝛼𝛼 and 𝛾𝛾 hold for the remaining scenarios (those that include different 
values of 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟, see Tables C1-C10 in Appendix C of the online supplement). Therefore Table 
3 explores the effects of varying these parameters by focusing on the most interesting scenario, the one in 
which there are high degrees of both types of bias (𝛾𝛾 = 0.5, 𝛼𝛼 = 1). We also limit the table to the MRP-
based models, which generally outperform the other estimation methods for each corresponding data 
source. 

Table 3. Simulation results for MRP-based models by 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓, and target population, for the 
scenarios where 𝜶𝜶 = 𝟏𝟏 and 𝜸𝜸 = 𝟏𝟏.𝟏𝟏. Estimates are presented as MSE on the percentage point 
scale (outcomes are percentages out of 100, not out of 1), with the absolute bias in parentheses. 
The Subgroup target population refers to lower-educated, rural women. SMS refers to MRP 
estimates based on SMS only, FTF refers to MRP estimates based on FTF only, and CMB refers to 
cMRP estimates that use both SMS and FTF data. 

Target 
Population 

 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟑𝟑𝟏𝟏𝟏𝟏 
𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ∞ 𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ∞ 

Full SMS 140.3 (11.4) 145.5 (11.7) 145.5 (11.7) 143.2 (11.6) 140.4 (11.5) 140.0 (11.5) 

Full FTF 10.8 (0.1) 12.8 (0.4) 12.8 (0.4) 7.9 (0.8) 6.0 (0.2) 5.9 (0.2) 

Full CMB 11.1 (0.8) 13.7 (1.5) 13.7 (1.5) 8.3 (1.3) 6.7 (0.5) 6.6 (0.5) 

Subgroup SMS 174.9 (12.4) 177.6 (12.5) 177.8 (12.5) 178.2 (12.5) 169.0 (12.2) 166.5 (12.1) 

Subgroup FTF 31.3 (3.1) 30.9 (3.5) 31.3 (3.5) 16.5 (2.3) 13.6 (1.7) 13.6 (1.7) 

Subgroup CMB 16.3 (2.3) 19.3 (2.6) 19.3 (2.6) 12.0 (2.3) 8.1 (1.4) 8.1 (1.4) 

We find the MSE improves slightly as  𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 increases for the scenarios where 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 = 300, but it tends 
to worsen slightly with increasing 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 for scenarios where 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 = 150. This latter pattern is surprising, 
and we suspect it could be a spurious finding due to only having run our simulation for 100 iterations. 
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Generally, we find that a reference dataset of size 3000 is sufficient to provide unbiased estimation with 
cMRP, though there is some evidence to suggest that variance can be improved with a larger reference 
dataset. Performance of MRP using face-to-face data only and cMRP improves when 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 increases 
from 150 to 300, with variance decreasing by approximately 25%-50% for both estimation procedures.  

 Finally, we assess the validity of the estimated standard errors by calculating the coverage rates of 

the 95% credible intervals across the 100 simulation iterations. Table 4 presents these results for the 

scenario with the largest amount of bias (𝛾𝛾 = 0.5, 𝛼𝛼 = 1), for the four estimators that use the combined 

(SMS and face-to-face) sample. The unadjusted and IPW estimators, which are highly biased, show poor 

coverage as expected. Both the Blended and cMRP estimators are very close (and sometimes above) the 

nominal 95% level in most scenarios.   

Table 4. Coverage rates of 95% credible intervals for MRP-based models without interactions by 
𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓, and target population, for the scenarios where 𝜶𝜶 = 𝟏𝟏 and 𝜸𝜸 = 𝟏𝟏.𝟏𝟏. The Subgroup target 
population refers to lower-educated, rural women. Coverage rates are based on 100 simulation 
iterations. 

Target 
Population 

 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟑𝟑𝟏𝟏𝟏𝟏 
𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ∞ 𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ∞ 

Full Unadj. 0% 0% 0% 0% 0% 0% 

Full IPW 0% 0% 0% 0% 0% 0% 

Full Blended 95% 94% 94% 94% 98% 98% 

Full cMRP 94% 92% 93% 90% 97% 95% 

Subgroup Unadj. 75% 81% 81% 83% 85% 85% 

Subgroup IPW 64% 71% 71% 74% 68% 68% 

Subgroup Blended 96% 91% 91% 96% 95% 95% 

Subgroup cMRP 90% 91% 91% 88% 93% 93% 

 

V. Applied Experiment 

5.1. Experiment design 

In this section, we further explore the performance of cMRP relative to other approaches by conducting 
an experiment using the Uganda financial inclusion data. We distinguish this experiment from the 
simulation described above because in this experiment we use the observed outcomes in the financial 
inclusion data, rather than simulating new outcomes. From this data we analyze seven different measures 
of financial inclusion (Figure 1). Since the Uganda FII dataset is relatively large (3,001 participants), a 
reasonable approach would be to ignore the SMS data and base all estimates off this face-to-face dataset. 
However, the purpose of this paper is to understand the performance of different approaches for cases 
when a much smaller face-to-face dataset is available. Therefore, we conduct an experiment to compare 
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the performance of each approach when a smaller face-to-face dataset is sampled at random from the full 
FII, under varying sampling schemes. 

The FII survey will play two important roles in this analysis. First, we will use a random subset of the FII 
to augment our SMS data. This procedure intends to simulate the situation in which a policymaker 
seeking to avoid the high cost of collecting the full FII instead collected a smaller FTF sample to calibrate 
a larger but less expensive SMS sample. Second, the population estimates from the FII will function as 
“ground truth” against which we will compare estimates from our new calibrated MRP approach. As we 
describe below, we will define the ground truth based on the portion of the FII that was not selected as 
part of the FTF sample used for calibration.  

We hypothesize that we can replicate the full FII results by combining SMS data with small samples from 
the FII. These samples will be either 5% or 10% of the total size of the FII survey for each country In 
Uganda, the full FII consists of 3,001 respondents, so the 5% and 10% samples will consist of 150 and 
300 respondents, respectively. For our study, these samples were selected as simple random draws, 
without replacement. We repeat this procedure 10 times for each of the two sample sizes, for a total of 20 
FII samples. 

5.2. Estimation and performance 

We estimate the level of each of the seven indicators of financial inclusion, separately for two target 
populations: the national population of Uganda and the subpopulation of poor rural women in the country. 
Poor rural women were specifically selected as a stratum of the population with high likelihood of being 
under-represented in SMS-based data collection. This stratum is also of specific interest to the financial 
inclusion community as the sub-population most likely to be financially excluded in Uganda and 
elsewhere. 

As we did in the simulation study, we consider three different data scenarios: one in which only the SMS 
data is available (1,362 respondents), one in which only the small sample of FII data (150 or 300 
respondents) is available, and one in which both samples are available. We implement the same 
estimation approaches that were introduced in Section 4.3, with two modifications: 

1. Instead of implementing two versions of the multilevel regression model for the MRP-based 
approaches, we only implement the version that includes interactions (MRP2 and cMRP2 from the 
simulation). We do this because exploratory analyses suggested large degrees of survey mode bias in 
the data. 

2. In addition to the IPW approach that is based on the logistic regression model (IPW-LR), we add a 
similar IPW approach that uses a gradient-boosted model to estimate the inclusion probabilities (IPW-
GBM). The gradient-boosted model considers all three-way interactions between adjustment variables 
and is implemented using the twang package in R (Ridgeway, McCaffrey, Morral, Griffin, & 
Burgette, 2014). The use of the latter model is intended to provide insight as to whether any 
differences in performance between MRP and IPW weighting are due to the importance of interaction 
terms in the corresponding model-based adjustment. 

In total, if we consider the two propensity score models to be different approaches, and we also consider 
the use of 5% or 10% of the FII data to be different approaches, we estimate each indicator for each target 
population in 24 different ways: 4 that use only SMS data, 8 that use only FII data, and 12 that use both 
SMS and FII data. 
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Based on a literature review (Null, Chaplin, Hartog, Jacobson, & Rangarajan, 2015; Blumenstock, 
Cadamuro, & On, 2015; Johnson, 2016; Lau et al., 2019), we identified nine poststratification variables 
that could be associated with both outcomes and sample selection: age, gender, education, urbanization, 
literacy, region, electricity adoption, poverty status, and phone ownership. We code each of these 
variables into discrete categories. These variables are used for the IPW-based methods (in the binary 
regression model) as well as for MRP and cMRP. 

After calculating each estimate using each approach, we compare the estimate to its target. Unlike the 
simulation study, where we were able to control and know the true rate of the outcomes, we do not know 
the true rate of any of the indicators in the population. Instead, we define the target to be the estimated 
rate of each indicator based on all FII data that was not included in the corresponding sample. In other 
words, for estimates that use a 10% sample of the FII, we define the target based on the remaining 90% 
FII sample, whereas for estimates that do not use any of the FII, we define the target using 100% of the 
FII sample. Target estimates are calculated using the sampling weights included with the FII data, which 
are based on population data by age, urbanization, and gender (InterMedia, 2016). 

For each combination of country, target population (national or poor rural women), indicator, and data 
scenario, we summarize the performance of each estimation method by estimating its bias, variance, and 
mean squared error (MSE). We define the bias as the difference between the point estimate and the target 
and variance as the model-based estimate of the variance of the point estimate (i.e., the squared standard 
error). For data scenarios that include FII data, these numbers are averaged across the 10 repeated 
samples; for those that do not include FII data, they are based on a single sample. We estimate the MSE 
as the sum of the squared bias and the variance. 

5.3. Results 

As previously mentioned, we estimate the rate of each indicator in the two target populations using 24 
different approaches. Two of these correspond to our cMRP approach (one using a 5% sample of FII and 
the other using a 10% sample), whereas the other 22 are potential competing approaches. Rather than 
comparing the results from all 24 approaches at once, we divide the presentation of results into three 
substantive groups. 

5.3.1. How does cMRP compare to approaches that only use the SMS data? 

First, we compare the two cMRP estimates to the four competing methods that only use SMS data. This 
comparison measures the marginal benefits of collecting a small, unbiased sample to augment an SMS 
sample. We display in Figure 1 the estimates for each of the seven outcomes and two target populations, 
using each of the six methods. Note that the cMRP estimates are based on only the first of the 10 repeated 
samples of FII data. 
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Figure 1. Comparison of estimates for each outcome and target population using cMRP to those 
based on only SMS data only. The two cMRP estimates are based on the first of the 10 repeated 
samples of FII data. Lines represent either 95% confidence intervals (for frequentist procedures) 
or 95% credible intervals (for MRP-based procedures). IPW-LR uses the logistic regression 
propensity model, and IPW-GBM uses the gradient boosted propensity score model. 

 

We see that the unadjusted SMS results (red) are highly biased for each of the 14 target estimands (black), 
in that they all overestimate the rates of financial inclusion in both target populations. This is not 
surprising. Since SMS respondents must have access to a cellular phone, the sample overrepresents more 
highly educated, younger, wealthier men – exactly the population that is more likely to be financially 
included. IPW procedures (gold and green) do little to decrease bias. The unadjusted and IPW estimates 
also have very small standard errors, indicating that not only are these estimates wrong, but they are very 
confident in their wrong estimates. Standard MRP estimates using only SMS data (teal) are somewhat 
better in that they are consistently less biased than the IPW estimates and estimate larger standard errors, 
but the resulting 95% credible intervals rarely cover the target. The cMRP estimates (blue and pink), on 
the other hand, are all much closer to the target than any of the approaches based on SMS data alone, and 
the credible intervals for every estimate cover their target. Performing cMRP using a 10% sample of FII 
reduces the standard error of the resulting estimates by an average of 33% (averaged across the 14 
estimands), compared to using a 5% sample of FII.  

These observations are reiterated by comparing the MSE of the six different approaches (Figure 2). As 
discussed in Section 5.2, the MSE values for the cMRP approaches are averaged across the 10 repeated 
FII samples. For this visualization, we then average the MSE values for each approach and target 
population across the seven indicators and decompose MSE into variance and squared bias to highlight 



Working Paper #66 

Mathematica 19 

these differences. We see that the unadjusted and IPW methods have very high MSE, and this MSE is 
dominated by squared bias. Standard MRP (using only SMS data) is also fairly biased. cMRP (using 
either the 5% or 10% sample) appears essentially unbiased in comparison, as evidenced by the fact that 
the corresponding bars are barely visible in the plot. This observation holds for both the national 
population and the subgroup of poor rural women, for which each of the other approaches fairs much 
worse.  

Figure 2. Comparison of the performance of each estimation approach that uses only SMS data to 
that of cMRP, averaging across the seven indicators. MSE is decomposed into the variance (light 
color on top) and squared bias (dark color below). IPW-LR uses the logistic regression propensity 
model, and IPW-GBM uses the gradient boosted propensity score model. 

 

5.3.2. How does cMRP compare to approaches that only use small samples of the FII data? We compare 
in Figure 3 the performance of each estimation method that only uses FII data to that of cMRP. As in 
Figure 2, we display the performance as MSE and decompose the MSE into its two components (squared 
bias and variance). Note that we also truncate the MSE axis at 0.004 in order to highlight differences 
among the higher-performing approaches; the MSE for the unadjusted and IPW approaches among poor 
rural women all exceeded 0.04 (10 times the maximum value on the axis). 

For the national target population, all five estimation methods perform reasonably well. Though the 
unadjusted estimates are biased (average bias is 2.8% for the 5% FII sample and 1.6% for the 10% FII 
sample), this bias can be nearly eliminated by using either IPW procedure. This is not the case among the 
subgroup of poor rural women because both the unadjusted and the IPW estimates are highly biased (bias 
is above 20% for each of the six approaches). These findings support the claims of Lau (2008), who found 
that weighting-based approaches tend to be biased for subgroup-specific estimates if the weights do not 
account for interactions between the subgroup-defining variables and other variables used for adjustment. 
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Figure 3. Comparison of the performance of each estimation approach that uses only FII data to 
that of cMRP, averaging across the seven indicators. Results are presented as MSE, which is 
decomposed into squared bias and variance. We truncate the vertical axis at 0.004 to highlight 
differences among the higher-performing approaches. IPW-LR uses the logistic regression 
propensity model, and IPW-GBM uses the gradient boosted propensity score model. 

 
Both standard MRP and cMRP offer improvements over the IPW-based approaches, both for the national 
target population and for poor rural women. In the case of the subgroup-specific estimates, this 
improvement is extreme: whereas the IPW approaches were highly biased, the estimates based on 
standard MRP are essentially unbiased. For the national population, the use of MRP instead of IPW adds 
a small amount of bias, but it more than makes up for this increase with a large reduction in the variance 
of the resulting estimates, resulting in lower overall MSE. Interestingly, standard MRP performs slightly 
better than cMRP when a 5% sample of FII data is used, whereas cMRP offers a slight improvement over 
standard MRP when a 10% sample of FII data is used. However, these differences are very small and 
likely negligible in practice. These results do suggest that a viable alternative to collecting both SMS and 
a small sample of FII data may be to simply collect the small sample of FII data and perform standard 
MRP. We discuss this issue further in the Discussion section. 

5.3.3. How does cMRP compare to other approaches that combine both SMS and FII data? 

Finally, we compare cMRP to other approaches that combine both SMS and FII data (Figure 4). Among 
these methods, cMRP is far and away the top performing approach based on MSE—so much so that the 
pink bars corresponding to the MSE of cMRP are barely visible in the plot. This is especially true among 
poor rural women, where the MSE exceeds 0.14 for all blending approaches, 0.24 for all stacking 
approaches, and 0.26 for the unadjusted approaches (these numbers exceed the range of the plot). 
Moreover, most of the inferior performance of the non-cMRP approaches is predominantly due to bias: 
squared bias accounts for at least 94% of MSE in each of these 20 cases and above 99% in most of them 
(which is why the variance contribution is barely visible in the plot). For cMRP, on the other hand, 
squared bias accounts for between 7% and 30% of total MSE. We also note that the blending algorithm of 
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Elliott and Haviland (2007) outperforms the more basic stacking procedure for both target populations, 
FII sample sizes, and propensity score methods, but it still performs much worse than cMRP. 

Figure 4. Comparison of the performance of each estimation approach that combines SMS and FII 
data, averaging across the seven indicators. Results are presented as MSE, which is decomposed 
into squared bias and variance. We truncate the vertical axis at 0.1 to highlight differences among 
the higher-performing approaches. IPW-LR uses the logistic regression propensity model, and 
IPW-GBM uses the gradient boosted propensity score model. 

 

VI. Discussion 
In this paper, we explored methods for the analysis of SMS survey data, with a focus on the application of 
MRP to obtain unbiased estimates of outcomes. We found that the standard application of MRP was 
insufficient to obtain unbiased estimates for outcomes related to digital financial inclusion because it 
could not correct for two potential sources of residual bias in the SMS data: residual sampling bias and 
survey mode bias. We then hypothesized that we can correct for these biases by collecting a relatively 
small sample of FTF data known to be free of survey mode bias. We also introduced calibrated MRP, a 
procedure that leverages the larger sample of inexpensive SMS data along with the unbiasedness of the 
FTF data in order to produce estimates either at the population level or for subgroups of interest. 

Through both a simulation study and an applied experiment, we showed that cMRP produces efficient, 
unbiased estimates of target parameters across a wide range of scenarios. Whenever a substantial amount 
of bias was present in the simulations and in every scenario of the applied experiment, cMRP had lower 
bias and MSE than all methods that were based on SMS data alone, as well as all other methods that 
combined SMS and face-to-face data. These results held consistently across all scenarios, target 
populations, and outcomes that were explored. 

We also found that calibrated MRP did not always outperform standard MRP that was applied to the 
small FII sample alone. This observation would indicate that for these cases, collecting the SMS sample is 
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not worth the effort and a small FTF probability survey is sufficient for obtaining accurate estimates. 
However, we caution against attempting this approach because in practice it will be difficult to collect a 
small FTF sample that has sufficient coverage to obtain reliable results. In these analyses, adequate 
coverage was likely because our FTF samples were generated as simple random samples from the full 
population. In practice, collecting such a sample would be cost prohibitive because it would require 
interviewers to travel to each randomly selected region of the country, only collecting a small number of 
responses in each location. Fielding a survey in this manner would cause the cost per response to increase 
dramatically. We believe that combining SMS data with this small FTF sample (and performing 
estimation using calibrated MRP) can increase the coverage of the resulting sample at a much lower cost. 
Future work is needed to understand the performance of calibrated MRP using more realistic sampling 
designs for the FTF data, and explore the optimal design for the small FTF sample under these real-world 
constraints. 

This study has several additional limitations. A limitation of both the simulation study and the applied 
experiment is that each was run for a relatively low number of iterations (100 for the simulation, 10 for 
the applied experiment). This was done due to the computational burden of fitting multiple Bayesian 
regression models under many different scenarios, but it could lead to spurious conclusions. Also in the 
applied experiment, the “target” we use to define the true indicator values in the population are not known 
but are estimated based on sampling weights that only account for age, gender, and urbanicity 
(InterMedia, 2016). Both the IPW and MRP procedures use a more exhaustive list of variables to adjust 
estimates to the target populations, and it is possible that some of these estimates could be closer to the 
true rate of the indicator in the country than the values we are using as the target. 

Despite these limitations, this study illustrates the potential for obtaining accurate, cost-effective estimates 
of national indicators from SMS data using calibrated MRP, by combining the SMS sample with a second 
survey mode that is less susceptible to residual bias. More work should be done to further explore the 
conditions under which such an approach is effective, both in terms of estimation accuracy and in 
reducing data collection costs. 
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Calibrated Multilevel Regression with Poststratification for the 
Analysis of SMS Survey Data 
Supplementary Material 
 

Appendix A. Model specification and sample code 

In this section, we present the full specification for each multilevel regression model discussed in the 
paper. Sample code that uses the brms package in R is also provided. We follow the same notation that is 
used in the paper, which we repeat here for convenience. Let 𝑘𝑘 ∈ {1, … ,𝐾𝐾} index the poststratification 
variables, and 𝑙𝑙 ∈ {1, … , 𝐿𝐿𝑘𝑘} index the level of the 𝑘𝑘𝑡𝑡ℎ poststratification variable. Also let 𝑦𝑦𝑖𝑖 ∈ {0,1} be 
the binary outcome for respondent 𝑖𝑖, and 𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖 ∈ {0,1} be the indicator that poststratification variable 𝑘𝑘 
takes the value 𝑙𝑙 for respondent 𝑖𝑖. Also let 𝑝𝑝𝑖𝑖 = Pr(𝑌𝑌𝑖𝑖 = 1). 

Model A1. Standard MRP model without interactions 

This specification is repeated from the text (Equation 3) for the reader’s convenience: 
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Model A2. Standard MRP model with interactions 
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𝐿𝐿𝑗𝑗

𝑙𝑙=1

𝐿𝐿𝑘𝑘

𝑖𝑖=1𝑗𝑗,𝑘𝑘:𝑗𝑗<𝑘𝑘

 

In addition to those listed for Model 1, we have the following priors (note the superscript “I” indicates 
“Interaction”): 

𝜙𝜙𝑖𝑖𝑙𝑙
𝑗𝑗𝑘𝑘 ∼ 𝑁𝑁�0,𝜎𝜎𝑗𝑗𝑘𝑘𝐼𝐼 � 

𝜎𝜎𝑗𝑗𝑘𝑘𝐼𝐼 ∼
1
2
𝑁𝑁(0, 𝜏𝜏𝐼𝐼) 
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Model A3. Calibrated MRP without interactions between poststratification variables 

Let 𝑀𝑀𝑖𝑖 ∈ {0,1} be the indicator that respondent 𝑖𝑖 was surveyed through the SMS survey. 

log �
𝑝𝑝𝑖𝑖

1− 𝑝𝑝𝑖𝑖
� = 𝛼𝛼 + 𝛽𝛽𝑀𝑀𝑖𝑖 + ��(𝛼𝛼𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖 +

𝐿𝐿𝑘𝑘

𝑖𝑖=1

𝛾𝛾𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

 

In addition to those listed for Model 1, we have the following priors (note the superscript “M” indicates 
“Mode”): 

𝛽𝛽 ∼ 𝑁𝑁(0,1) 
𝛾𝛾𝑖𝑖𝑘𝑘 ∼ 𝑁𝑁�0,𝜎𝜎𝑘𝑘𝑀𝑀� 

𝜎𝜎𝑘𝑘𝑀𝑀 ∼
1
2
𝑁𝑁(0, 𝜏𝜏𝐼𝐼) 

 

Model A4. Calibrated MRP with interactions between poststratification variables 

log �
𝑝𝑝𝑖𝑖

1− 𝑝𝑝𝑖𝑖
� = 𝛼𝛼 + 𝛽𝛽𝑀𝑀𝑖𝑖 + ��(𝛼𝛼𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖 +

𝐿𝐿𝑘𝑘

𝑖𝑖=1

𝛾𝛾𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

+ � � � 𝜙𝜙𝑖𝑖𝑙𝑙
𝑗𝑗𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝑗𝑗𝑙𝑙

𝐿𝐿𝑗𝑗

𝑙𝑙=1

𝐿𝐿𝑘𝑘

𝑖𝑖=1𝑗𝑗,𝑘𝑘:𝑗𝑗<𝑘𝑘

 

This model includes all priors that are appear above in Models 1, 2, or 3. Note that for simplicity, the 
same hyperprior 1

2
𝑁𝑁(0, 𝜏𝜏𝐼𝐼) applies to the variance components associated with all interaction terms, 

regardless of whether the term includes the survey mode indicator. 

Appendix B. Sample code 
This section presents the R code that we used to fit the multilevel models and perform the 
poststratification. The code uses the brms package (Bürkner, 2018) to fit the model. brms is a wrapper 
for the rstan package (Stan Development Team, 2020), which uses Stan on the backend to fit the 
Bayesian model. 

The code is parameterized so that it can fit all four of the models described in Appendix A. The main 
function for fitting the multilevel regression model is fit_model(), which takes four arguments: the 
data as a data.frame (dat), a  vector of poststratification variables (xvars), whether or not interactions 
should be used (use_interactions), and whether to fit cMRP or standard MRP (cMRP). Two 
accessory functions follow the declaration of fit_model(). Required packages include tidyverse 
and brms, as well as their dependencies. 

fit_model <- function(dat, xvars, use_interactions, cMRP) { 
   
  interactions <- if (use_interactions){ 
    combn(xvars,2) %>% 
      t() %>% 
      data.frame(stringsAsFactors=F) %>% 
      filter(X1!=X2) %>% 
      mutate(interaction = paste0(X1,":",X2)) %>%  
      pull(interaction) 
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  } else NULL 
 
  if (cMRP) { 
    interactions <- c(interactions, 
                      paste(xvars, "Mode", sep = ":")) 
    xvars <- c(xvars, "Mode") 
  } 
 
  fmla <- build_fmla("Y", xvars, interactions) 
  prior <- build_priors_hier(xvars, interactions) 
   
  brm(fmla, prior = prior$prior, stanvar = prior$stanvar, 
      family = "bernoulli", data = dat, iter = 1000, chains = 4) 
} 
 
build_fmla <- function(outcome, ps_vars, interactions=NULL){ 
  paste(outcome, "~", paste0("(1|", c(ps_vars, interactions) ,")", 
                             collapse=" + ")) %>% 
    as.formula() 
} 
 
 
build_priors_hier <- function(ps_vars, interactions){ 
  stanvar <- stanvar(scode = c("real<lower=0> tau_sigma;"),  
                     block = "parameters") 
   
  prior <- 
    prior_string("normal(0,tau_sigma)",class="sd") +  
    prior(normal(0,1), class = "Intercept") +  
    prior_string("target += normal_lpdf(tau_sigma | 0, 1) - 1 * 
normal_lccdf(0 |0, 1)", check=F) 
   
  if (!is.null(interactions)){ 
    prior_interactions <- 
      map_df(interactions, 
     ~prior_string("normal(0,tau_sigma2)",class="sd",group=.)) + 
      prior_string("target += normal_lpdf(tau_sigma2 | 0, 1) - 1 * 
normal_lccdf(0 |0, 1)", check=F) 
    prior <- prior + prior_interactions 
    stanvar = stanvar + 
      stanvar(scode = c("real<lower=0> tau_sigma2;"), 
              block = "parameters")  
  } 
 
  list(prior=prior, stanvar=stanvar) 
} 

The following function, poststratify_mrp(), performs the poststratification. It requires four 
arguments: the fitted brms model (fit), a data.frame that has one row for every combination of 
poststratification variables and a Weight column containing the poststratification weight (psw), whether 
cMRP is being performed (cMRP), and whether the target population is the subgroup or the full 
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population (subgroup). It returns the posterior for the poststratified estimate in the target population, as 
a vector. 

poststratify_mrp <- function(fit, psw, cMRP, subgroup) { 
   
  # Predict poststratification cells (returns the full posterior) 
  if (cMRP) { 
    # Predict assuming Mode is F2F 
    psw$Mode <- "F2F" 
  } 
  pred <- posterior_linpred(fit, newdata = psw, transform = TRUE, 
                            allow_new_levels = TRUE) 
  psw$pred <- t(pred) 
   
  if (subgroup) { 
    # Filter to lower educated rural women and rescale weights 
    psw <- filter(psw, 
                  Education == "Primary education incomplete", 
                  Rural == "rural", 
                  Gender == "Woman") %>% 
      mutate(Weight = Weight/sum(Weight)) 
     
  } 
   
  # Poststratify 
  t(psw$pred) %*% psw$Weight %>% 
    as.numeric() 
} 
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Appendix C. Additional simulation results 
 

Tables 1-2 of the paper show simulation results for the scenarios where 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 = 150 and 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 = ∞. 
Here, we present the remaining 10 tables, which correspond to five other combinations of 𝑁𝑁𝐹𝐹2𝐹𝐹 and 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟, 
and for each target population. 

Table C2. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟏𝟏𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏, and the target 
population is the full population. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 1.6 (0.4) 291.3 (17.0) 1140.2 (33.7) 92.3 (9.5) 647.0 (25.4) 1710.8 (41.3) 

SMS IPW 1.5 (0.1) 39.9 (6.2) 206.4 (14.2) 87.6 (9.3) 232.3 (15.2) 536.9 (23.0) 

SMS MRP1 1.6 (0.2) 1.9 (0.4) 12.7 (2.6) 83.7 (9.1) 93.7 (9.6) 140.3 (11.4) 

SMS MRP2 1.5 (0.2) 1.9 (0.3) 12.6 (2.5) 84.1 (9.1) 93.0 (9.5) 138.9 (11.3) 

FTF Unadj. 16.0 (0.9) 14.3 (0.4) 14.3 (0.1) 16.2 (0.4) 12.9 (0.5) 13.8 (0.2) 

FTF IPW 15.1 (0.6) 12.7 (0.0) 12.6 (0.4) 11.1 (0.3) 15.3 (0.2) 12.4 (0.3) 

FTF MRP1 13.9 (0.7) 10.8 (0.1) 11.1 (0.4) 11.8 (0.2) 14.0 (0.4) 10.8 (0.1) 

FTF MRP2 13.5 (0.6) 10.7 (0.0) 10.9 (0.4) 11.8 (0.3) 13.8 (0.4) 11.2 (0.1) 

CMB Unadj. 1.6 (0.4) 242.1 (15.5) 941.6 (30.7) 77.2 (8.7) 537.0 (23.2) 1415.2 (37.6) 

CMB IPW 1.4 (0.1) 33.1 (5.6) 169.9 (12.9) 73.0 (8.5) 192.7 (13.8) 442.3 (20.9) 

CMB Blended 6.8 (0.4) 14.6 (1.5) 14.3 (0.7) 16.2 (1.9) 19.6 (1.3) 13.6 (0.4) 

CMB cMRP1 7.9 (0.3) 5.4 (0.1) 8.0 (0.2) 12.6 (1.2) 14.1 (1.4) 11.1 (0.8) 

CMB cMRP2 9.0 (0.3) 6.6 (0.1) 8.5 (0.1) 11.4 (1.1) 13.2 (1.2) 10.6 (0.7) 

 

Table C2. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟏𝟏𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏, and the target 
population is the subgroup of lower-educated, rural women. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 3.2 (0.1) 6.2 (0.5) 103.5 (6.8) 64.8 (7.8) 71.9 (8.0) 290.6 (14.8) 

SMS IPW 3.0 (0.1) 5.7 (0.1) 78.9 (5.2) 58.8 (7.5) 59.4 (7.2) 241.9 (13.1) 

SMS MRP1 2.8 (0.8) 4.8 (1.2) 37.1 (5.0) 74.5 (8.5) 78.1 (8.6) 174.9 (12.4) 

SMS MRP2 2.5 (0.6) 4.2 (0.9) 36.6 (4.9) 68.5 (8.1) 71.8 (8.2) 168.3 (12.1) 

FTF Unadj. 37.0 (0.6) 31.2 (0.6) 25.7 (0.0) 39.6 (0.7) 37.0 (0.1) 28.2 (0.2) 

FTF IPW 34.1 (0.0) 30.7 (1.0) 24.8 (0.3) 40.5 (0.3) 39.5 (0.4) 28.4 (0.2) 

FTF MRP1 41.0 (4.2) 36.8 (3.6) 27.1 (3.3) 37.3 (3.7) 33.5 (3.1) 31.3 (3.1) 

FTF MRP2 35.4 (3.3) 29.9 (2.5) 23.3 (2.5) 34.2 (3.1) 30.7 (2.3) 27.9 (2.5) 

CMB Unadj. 2.9 (0.2) 5.5 (0.3) 26.9 (2.8) 54.3 (7.2) 52.6 (6.8) 64.2 (6.5) 

CMB IPW 2.8 (0.1) 5.1 (0.2) 54.7 (4.2) 49.5 (6.8) 47.6 (6.4) 166.8 (10.8) 

CMB Blended 17.7 (0.3) 17.7 (1.0) 21.1 (0.2) 36.6 (1.6) 35.4 (1.0) 28.2 (1.1) 

CMB cMRP1 7.5 (1.3) 6.1 (1.0) 12.0 (2.3) 11.8 (2.0) 12.4 (1.7) 16.3 (2.3) 

CMB cMRP2 8.9 (1.3) 7.4 (0.9) 11.2 (2.0) 12.0 (1.8) 11.9 (1.5) 14.8 (2.0) 



Working Paper #66 

Mathematica 30 

Table C3. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟏𝟏𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, and the target 
population is the full population. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 1.5 (0.5) 301.2 (17.3) 1133.2 (33.6) 92.3 (9.5) 645.0 (25.4) 1710.8 (41.3) 

SMS IPW 1.4 (0.2) 12.6 (3.3) 91.6 (9.2) 85.9 (9.2) 155.2 (12.4) 372.9 (19.1) 

SMS MRP1 1.3 (0.0) 1.9 (0.5) 11.9 (2.4) 83.6 (9.1) 92.9 (9.5) 145.5 (11.7) 

SMS MRP2 1.3 (0.1) 1.8 (0.4) 11.8 (2.3) 84.0 (9.1) 92.1 (9.5) 144.5 (11.7) 

FTF Unadj. 12.9 (0.2) 14.8 (1.1) 14.1 (0.3) 18.8 (0.7) 13.8 (0.7) 16.4 (0.4) 

FTF IPW 14.3 (0.4) 11.5 (0.3) 13.8 (0.1) 12.2 (0.4) 11.0 (0.4) 14.6 (0.3) 

FTF MRP1 12.6 (0.3) 10.9 (0.5) 12.2 (0.0) 13.3 (0.5) 9.5 (0.5) 12.8 (0.4) 

FTF MRP2 12.9 (0.2) 10.6 (0.6) 12.1 (0.0) 13.4 (0.5) 9.2 (0.5) 13.5 (0.3) 

CMB Unadj. 1.4 (0.4) 252.2 (15.8) 938.2 (30.6) 77.5 (8.7) 536.2 (23.1) 1416.6 (37.6) 

CMB IPW 1.2 (0.2) 10.8 (3.0) 75.8 (8.4) 71.7 (8.4) 129.3 (11.3) 309.5 (17.4) 

CMB Blended 6.7 (0.3) 8.9 (1.4) 16.3 (1.5) 16.0 (1.9) 16.1 (1.8) 17.7 (1.3) 

CMB cMRP1 6.7 (0.0) 5.8 (0.6) 7.7 (0.3) 14.5 (1.6) 11.2 (1.6) 13.7 (1.5) 

CMB cMRP2 8.2 (0.1) 6.7 (0.6) 8.3 (0.2) 13.2 (1.4) 10.2 (1.4) 12.8 (1.3) 

 

Table C4. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟏𝟏𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, and the target 
population is the subgroup of lower-educated, rural women. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 3.2 (0.2) 6.4 (0.6) 90.1 (5.3) 66.9 (7.9) 80.3 (8.6) 223.9 (12.6) 

SMS IPW 3.1 (0.1) 5.8 (0.1) 81.3 (4.4) 59.0 (7.4) 65.3 (7.6) 194.9 (11.5) 

SMS MRP1 2.4 (0.9) 4.0 (1.2) 32.5 (4.4) 74.2 (8.4) 85.2 (9.0) 177.6 (12.5) 

SMS MRP2 2.3 (0.6) 3.7 (0.9) 32.9 (4.2) 69.1 (8.1) 78.7 (8.6) 168.5 (12.1) 

FTF Unadj. 30.1 (0.2) 29.6 (0.9) 37.0 (0.1) 27.9 (0.2) 27.0 (0.8) 32.8 (0.2) 

FTF IPW 29.4 (0.6) 29.6 (0.5) 37.8 (0.1) 28.8 (0.1) 26.3 (0.3) 37.2 (0.4) 

FTF MRP1 38.2 (4.2) 38.8 (4.2) 39.5 (3.7) 34.6 (3.9) 34.0 (4.1) 30.9 (3.5) 

FTF MRP2 30.7 (3.1) 33.3 (3.6) 36.1 (2.9) 29.8 (3.0) 28.5 (3.4) 28.5 (2.6) 

CMB Unadj. 2.6 (0.2) 5.5 (0.7) 27.8 (2.2) 55.8 (7.2) 60.0 (7.3) 54.1 (5.2) 

CMB IPW 2.5 (0.1) 5.2 (0.0) 60.6 (3.7) 49.0 (6.8) 53.7 (6.9) 143.4 (9.8) 

CMB Blended 14.6 (0.8) 16.0 (0.0) 31.5 (0.1) 27.2 (1.4) 26.4 (1.8) 37.0 (0.6) 

CMB cMRP1 6.0 (0.9) 5.6 (1.4) 13.5 (2.0) 13.6 (2.2) 12.3 (2.3) 19.3 (2.6) 

CMB cMRP2 7.5 (1.1) 8.3 (1.5) 14.5 (1.8) 12.9 (2.1) 11.6 (2.0) 17.8 (2.3) 
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Table C5. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟑𝟑𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏, and the target 
population is the full population. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 1.4 (0.3) 303.7 (17.4) 1145.3 (33.8) 95.9 (9.7) 662.4 (25.7) 1713.4 (41.4) 

SMS IPW 1.3 (0.2) 44.7 (6.5) 212.6 (14.4) 92.5 (9.5) 242.2 (15.5) 547.5 (23.3) 

SMS MRP1 1.2 (0.0) 2.6 (0.7) 13.7 (2.5) 88.7 (9.3) 98.3 (9.8) 143.2 (11.6) 

SMS MRP2 1.2 (0.0) 2.6 (0.7) 13.8 (2.5) 88.8 (9.4) 97.5 (9.8) 141.4 (11.5) 

FTF Unadj. 6.5 (0.4) 7.2 (0.0) 7.5 (0.2) 11.5 (0.6) 6.6 (0.7) 8.4 (0.8) 

FTF IPW 6.6 (0.3) 6.7 (0.1) 6.7 (0.1) 10.0 (0.5) 5.7 (0.3) 8.3 (0.8) 

FTF MRP1 6.2 (0.2) 6.5 (0.2) 6.2 (0.1) 9.4 (0.4) 5.4 (0.2) 7.9 (0.8) 

FTF MRP2 6.1 (0.2) 6.6 (0.2) 6.3 (0.1) 9.4 (0.4) 5.4 (0.2) 8.0 (0.8) 

CMB Unadj. 1.1 (0.3) 211.2 (14.5) 797.2 (28.2) 68.7 (8.2) 464.9 (21.5) 1199.0 (34.6) 

CMB IPW 1.1 (0.2) 31.0 (5.4) 148.1 (12.0) 65.9 (8.0) 169.6 (13.0) 385.6 (19.5) 

CMB Blended 3.4 (0.2) 8.1 (0.9) 7.9 (0.7) 13.1 (1.4) 6.8 (0.8) 9.3 (1.2) 

CMB cMRP1 3.9 (0.1) 4.3 (0.0) 4.6 (0.2) 10.3 (1.1) 6.1 (0.7) 8.3 (1.3) 

CMB cMRP2 4.5 (0.1) 4.7 (0.1) 4.7 (0.2) 9.7 (1.0) 5.8 (0.7) 8.2 (1.3) 

 

Table C6. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟑𝟑𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟑𝟑𝟏𝟏𝟏𝟏𝟏𝟏, and the target 
population is the subgroup of lower-educated, rural women. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 2.8 (0.1) 3.6 (0.7) 57.6 (3.9) 66.0 (7.9) 83.0 (8.7) 263.6 (13.9) 

SMS IPW 2.8 (0.2) 2.8 (0.1) 44.0 (2.1) 60.1 (7.5) 67.8 (7.8) 209.1 (11.8) 

SMS MRP1 2.4 (0.7) 4.4 (1.4) 33.3 (4.1) 74.6 (8.5) 84.3 (8.9) 178.2 (12.5) 

SMS MRP2 2.1 (0.4) 3.3 (1.0) 31.7 (3.9) 69.2 (8.1) 78.4 (8.6) 171.8 (12.2) 

FTF Unadj. 13.7 (0.9) 18.5 (0.7) 12.6 (0.7) 19.0 (0.3) 13.9 (0.3) 19.0 (0.3) 

FTF IPW 12.6 (0.4) 16.0 (0.1) 11.7 (0.3) 18.1 (0.1) 12.6 (0.2) 18.1 (0.1) 

FTF MRP1 14.4 (2.5) 16.7 (2.2) 12.6 (2.1) 19.4 (2.4) 14.3 (2.3) 16.5 (2.3) 

FTF MRP2 12.9 (2.1) 14.5 (1.7) 11.1 (1.6) 16.8 (1.8) 12.2 (1.8) 15.9 (1.8) 

CMB Unadj. 2.2 (0.2) 3.5 (0.7) 12.1 (1.6) 47.2 (6.6) 45.5 (6.4) 31.8 (3.9) 

CMB IPW 2.2 (0.1) 2.5 (0.1) 22.4 (1.6) 42.8 (6.3) 43.5 (6.3) 105.5 (8.3) 

CMB Blended 6.6 (0.1) 8.6 (0.1) 9.6 (0.4) 18.9 (1.0) 13.7 (0.9) 18.1 (0.6) 

CMB cMRP1 3.7 (0.8) 5.0 (0.9) 7.1 (1.4) 10.2 (1.6) 5.7 (1.3) 12.0 (2.3) 

CMB cMRP2 4.4 (0.9) 5.6 (0.8) 6.7 (1.1) 9.8 (1.4) 5.8 (1.2) 11.0 (1.9) 
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Table C7. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟑𝟑𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, and the target 
population is the full population. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 2.0 (0.6) 299.6 (17.3) 1134.5 (33.7) 94.3 (9.6) 649.0 (25.5) 1719.3 (41.5) 

SMS IPW 1.6 (0.4) 13.7 (3.4) 94.8 (9.4) 89.7 (9.4) 155.3 (12.4) 362.0 (18.8) 

SMS MRP1 1.5 (0.3) 2.2 (0.5) 10.8 (2.4) 87.9 (9.3) 93.4 (9.5) 140.4 (11.5) 

SMS MRP2 1.5 (0.3) 2.1 (0.5) 10.4 (2.3) 88.0 (9.3) 92.9 (9.5) 138.5 (11.4) 

FTF Unadj. 7.7 (0.4) 9.6 (0.1) 6.3 (0.1) 10.2 (0.2) 9.5 (0.5) 7.9 (0.0) 

FTF IPW 8.3 (0.4) 8.4 (0.1) 7.4 (0.0) 8.9 (0.4) 7.2 (0.1) 6.3 (0.2) 

FTF MRP1 8.1 (0.4) 8.0 (0.1) 6.8 (0.1) 8.7 (0.2) 7.0 (0.1) 6.0 (0.2) 

FTF MRP2 7.9 (0.4) 7.9 (0.0) 6.8 (0.1) 8.6 (0.2) 6.9 (0.1) 5.9 (0.2) 

CMB Unadj. 1.8 (0.6) 208.7 (14.4) 788.2 (28.1) 66.4 (8.1) 454.7 (21.3) 1194.6 (34.6) 

CMB IPW 1.5 (0.4) 9.5 (2.8) 66.3 (7.8) 61.6 (7.8) 108.5 (10.3) 250.8 (15.7) 

CMB Blended 4.6 (0.4) 7.0 (0.6) 8.8 (0.8) 10.3 (0.5) 8.8 (0.8) 6.6 (0.2) 

CMB cMRP1 5.1 (0.3) 5.4 (0.0) 4.8 (0.2) 9.1 (0.3) 7.5 (0.8) 6.7 (0.5) 

CMB cMRP2 5.8 (0.4) 6.1 (0.0) 5.2 (0.1) 8.9 (0.2) 7.0 (0.7) 6.4 (0.4) 

 

Table C8. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟑𝟑𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, and the target 
population is the subgroup of lower-educated, rural women. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 2.4 (0.4) 6.4 (0.5) 84.2 (4.5) 64.3 (7.9) 70.9 (7.9) 250.4 (14.1) 

SMS IPW 2.1 (0.0) 5.8 (0.1) 75.8 (3.4) 55.8 (7.3) 56.8 (7.0) 217.9 (13.0) 

SMS MRP1 2.6 (1.0) 5.7 (1.4) 32.7 (4.1) 71.9 (8.4) 79.6 (8.6) 169.0 (12.2) 

SMS MRP2 2.1 (0.7) 4.8 (1.0) 31.9 (3.8) 68.0 (8.1) 73.1 (8.2) 162.6 (11.9) 

FTF Unadj. 18.8 (0.5) 18.2 (0.5) 17.0 (0.0) 16.1 (0.3) 20.9 (0.7) 15.7 (0.4) 

FTF IPW 19.4 (0.2) 17.4 (0.1) 17.5 (0.4) 16.4 (0.9) 21.1 (0.4) 16.1 (1.0) 

FTF MRP1 17.4 (2.4) 15.4 (2.3) 15.3 (2.0) 14.7 (2.0) 17.7 (2.5) 13.6 (1.7) 

FTF MRP2 15.7 (1.8) 14.2 (1.7) 13.4 (1.5) 13.0 (1.3) 16.2 (2.0) 12.3 (1.2) 

CMB Unadj. 2.2 (0.4) 4.7 (0.5) 14.2 (1.3) 44.6 (6.5) 41.8 (6.0) 25.1 (3.5) 

CMB IPW 1.9 (0.0) 4.4 (0.1) 42.5 (2.5) 37.7 (5.9) 39.7 (5.8) 119.2 (9.5) 

CMB Blended 11.5 (0.0) 11.1 (0.0) 16.2 (0.3) 17.4 (0.3) 21.5 (1.4) 16.4 (0.3) 

CMB cMRP1 4.5 (1.0) 5.9 (1.0) 7.2 (1.4) 6.6 (0.9) 7.8 (1.3) 8.1 (1.4) 

CMB cMRP2 5.5 (0.9) 6.2 (0.9) 7.4 (1.2) 6.6 (0.8) 8.1 (1.2) 7.6 (1.1) 
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Table C9. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟑𝟑𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = ∞, and the target population 
is the full population. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 2.0 (0.6) 299.6 (17.3) 1134.5 (33.7) 94.3 (9.6) 649.0 (25.5) 1719.3 (41.5) 

SMS IPW 1.6 (0.4) 13.7 (3.4) 94.8 (9.4) 89.7 (9.4) 155.3 (12.4) 362.0 (18.8) 

SMS MRP1 1.5 (0.3) 2.2 (0.5) 10.9 (2.4) 87.5 (9.3) 93.4 (9.5) 140.0 (11.5) 

SMS MRP2 1.5 (0.4) 2.1 (0.5) 10.5 (2.3) 87.7 (9.3) 93.1 (9.5) 138.5 (11.4) 

FTF Unadj. 7.7 (0.4) 9.6 (0.1) 6.3 (0.1) 10.2 (0.2) 9.5 (0.5) 7.9 (0.0) 

FTF IPW 8.3 (0.4) 8.4 (0.1) 7.4 (0.0) 8.9 (0.4) 7.2 (0.1) 6.3 (0.2) 

FTF MRP1 8.2 (0.4) 7.9 (0.1) 6.7 (0.1) 8.6 (0.2) 7.1 (0.1) 5.9 (0.2) 

FTF MRP2 8.0 (0.4) 7.9 (0.0) 6.9 (0.1) 8.5 (0.2) 6.9 (0.1) 5.8 (0.2) 

CMB Unadj. 1.8 (0.6) 208.7 (14.4) 788.2 (28.1) 66.4 (8.1) 454.7 (21.3) 1194.6 (34.6) 

CMB IPW 1.5 (0.4) 9.5 (2.8) 66.3 (7.8) 61.6 (7.8) 108.5 (10.3) 250.8 (15.7) 

CMB Blended 4.6 (0.4) 7.0 (0.6) 8.8 (0.8) 10.3 (0.5) 8.8 (0.8) 6.6 (0.2) 

CMB cMRP1 5.2 (0.3) 5.4 (0.0) 4.9 (0.2) 8.9 (0.2) 7.6 (0.8) 6.6 (0.5) 

CMB cMRP2 5.9 (0.4) 6.0 (0.0) 5.2 (0.1) 8.7 (0.2) 7.1 (0.7) 6.2 (0.4) 

 

Table C10. Simulation results for the scenarios with 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 = 𝟑𝟑𝟏𝟏𝟏𝟏, 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = ∞, and the target 
population is the subgroup of lower-educated, rural women. 

Source Method 
No survey mode bias (𝜸𝜸 = 𝟏𝟏) With survey mode bias (𝜸𝜸 = 𝟏𝟏.𝟏𝟏) 

𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏 𝜶𝜶 = 𝟏𝟏.𝟏𝟏 𝜶𝜶 = 𝟏𝟏 
SMS Unadj. 2.4 (0.4) 6.4 (0.5) 84.2 (4.5) 64.3 (7.9) 70.9 (7.9) 250.4 (14.1) 

SMS IPW 2.1 (0.0) 5.8 (0.1) 75.8 (3.4) 55.8 (7.3) 56.8 (7.0) 217.9 (13.0) 

SMS MRP1 2.5 (0.9) 5.6 (1.4) 32.8 (4.1) 72.3 (8.4) 79.5 (8.6) 166.5 (12.1) 

SMS MRP2 2.1 (0.6) 4.7 (1.0) 32.1 (3.9) 68.4 (8.2) 73.0 (8.2) 161.2 (11.9) 

FTF Unadj. 18.8 (0.5) 18.2 (0.5) 17.0 (0.0) 16.1 (0.3) 20.9 (0.7) 15.7 (0.4) 

FTF IPW 19.4 (0.2) 17.4 (0.1) 17.5 (0.4) 16.4 (0.9) 21.1 (0.4) 16.1 (1.0) 

FTF MRP1 17.0 (2.4) 15.0 (2.3) 15.4 (2.0) 14.5 (2.0) 18.0 (2.5) 13.6 (1.7) 

FTF MRP2 15.2 (1.8) 14.2 (1.7) 13.3 (1.5) 12.9 (1.3) 16.5 (2.0) 12.3 (1.1) 

CMB Unadj. 2.2 (0.4) 4.7 (0.5) 14.2 (1.3) 44.6 (6.5) 41.8 (6.0) 25.1 (3.5) 

CMB IPW 1.9 (0.0) 4.4 (0.1) 42.5 (2.5) 37.7 (5.9) 39.7 (5.8) 119.2 (9.5) 

CMB Blended 11.5 (0.0) 11.1 (0.0) 16.2 (0.3) 17.4 (0.3) 21.5 (1.4) 16.4 (0.3) 

CMB cMRP1 4.4 (1.0) 5.7 (1.0) 7.2 (1.4) 6.5 (0.9) 7.9 (1.3) 8.1 (1.4) 

CMB cMRP2 5.3 (0.9) 6.0 (0.9) 7.4 (1.2) 6.6 (0.8) 8.2 (1.2) 7.5 (1.1) 
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